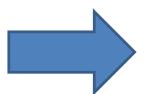


Liberté Égalité Fraternité



2012-2014

ÉTUDE DE LA GESTION QUANTITATIVE DU FLEUVE RHÔNE À L'ÉTIAGE PRINCIPAUX RÉSULTATS Novembre 2014

- Fonctionnement du fleuve Rhône à l'étiage
- Connaissance des prélèvements bruts et nets
- Définition de débits nécessaires pour Eau potable, Milieux aquatiques, Centrales nucléaires,
- Estimation de la marge de manœuvre pour de nouveaux prélèvements
- Un fleuve abondant...

Alertes/effets du CC, Préconisation du SDAGE de porter une attention particulière à la gestion des débits du fleuve Rhône

- Mise à jour et évolution des prélèvements depuis 10 ans
- Comment l'hydrologie du Rhône a-t-elle / va-t-elle évoluer sous l'impact du changement climatique ?
- Quels sont les enjeux associés et avec quelle criticité ?
- Quels sont les prélèvements soutenables durablement ?

Maîtrise d'ouvrage

Fraternité

Bureau d'étude

Mandataire:

Sous-traitants:

Délai: 24 mois,

de février 2021 à janvier 2023

COPIL

- Agence de l'eau RMC,
- DREAL de bassin
- DRAAF de bassin
- CNR
- EDF
- OFB
- INRAE

Coût: 482 850 € TTC

Étude de l'hydrologie du fleuve Rhône sous changement climatique

Mission 1 : Diagnostic actualisé de la situation hydrologique du fleuve et Evolution depuis 1960

Fév 2021 à mai 2022

- Bilan des prélèvements et des influences
- Caractérisation de l'étiage naturel (état actuel)
- Analyse des données de climat passé et futur
- Caractérisation de l'étiage en climat futur
- Analyse du degré d'incertitude

Mission 2 : Evaluation de la vulnérabilité et criticité de la ressource Rhône

Juin 2022 à sept 2022

- Identification et caractérisation des enjeux
- Analyse des risques et diagnostic de vulnérabilité par tronçon

Mission 3 : Tester et évaluer une capacité de prélèvements supplémentaires

Oct 2022 à janv 2023

- Choix des hypothèses à tester
- Analyse des résultats des différents scénarios

Planning prévisionnel

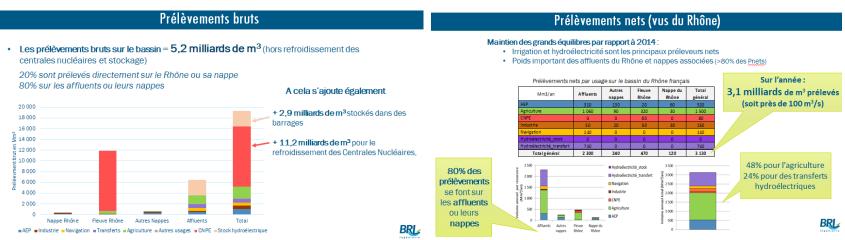
Un fleuve abondant (pour l'instant)

Comment les prélèvements influencentils les débits ?

Comment le climat a t-il déjà changé et pourrait encore changer ?

Comment les débits du Rhône ont-ils déjà changé et pourraient encore changer ?

Evaluation de la vulnérabilité et criticité de la ressource Rhône : validation des 6 enjeux étudiés

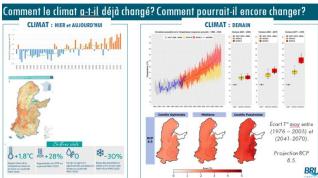


Principaux résultats

 Un niveau de prélèvements relativement stable depuis 10 ans :

Depuis 10 ans les prélèvements AEP et irrigation globalement stables, les prélèvements industriels ont baissé (-14%)...

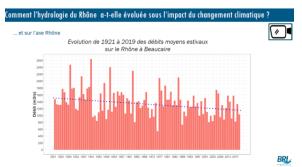
Les prélèvements actuels représentent 15% du débit en juillet et en août ;



Principaux résultats

Evolutions climatiques

Températures, ETP, accélération de la fonte glacière, avancée du pic de fonte des neiges

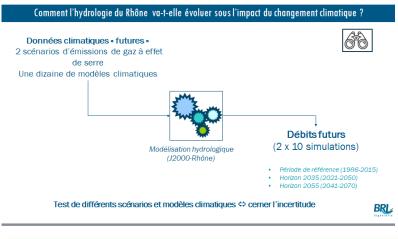


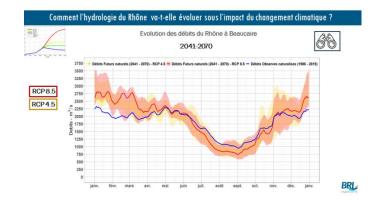
Evolution de la température du Fleuve

+2 à +4,5°C sous l'effet conjugué de l'augmentation de la température de l'air et de l'implantation de centrales nucléaires

Evolution de l'hydrologie du Rhône

Baisse des débits constatée passée -15% à Beaucaire au mois d'Aout





Principaux résultats

Hydrologie future modélisée

RI	ône à					т	able	au d	le s	ynth	èse	- Ho	orizo	on 20	055	(20	41 -	207	0)	- RC	P 8.	5		6	36		
Beaucaire		Jan.		Fév.		Mars		Avr.		Mai		Juin		Juil.		Aoû.		Sept.		Oct.		Nov.		Déc.		Annuel	
		m³/s	Δ(%)	m³/s Δ(%)		m³/s	Δ(%)	m³/s	Δ(%)	m³/s	Δ(%)	m³/s	Δ(%)	m³/s	Δ(%)	m³/s	Δ(%)	m³/s	Δ(%)	m³/s	Δ(%)	m³/s	Δ(%)	m³/s	Δ(%)	m³/s	Δ(%)
Q _{Moyen}	Q_Obs_Desinf.	2171		1958	133	1991		2106	1	2173		1880		1407	(+)	1053	1	1096	34	1553		2060		2046		1790	
	Q_Fut_Min	2479	14%	2054	5%	1926	-3%	2102	0%	1999	-8%	1457	-23%	884	-37%	683	-35%	684	-38%	1144	-26%	1519	-26%	1964	-4%	1671	-7%
	Q_Fut_Med	2682	24%	2522	29%	2432		2251	7%	2194		1825	-3%	1166	-17%	830	-21%	907	-17%	1432	-8%	2131		2332	14%	1903	636
	Q_Fut_Max	3277	51%	2821	44%	2720	37%	2564	22%	2468	14%	2061	10%	1409	0%	1174	12%	1228	12%	1826	18%	2578	25%	2799	37%	2179	22%
Q _{S ans sec}	Q_Obs_Desinf.	1389		1297		1371	125	1376	1	1527	30	1437		1080		877		758	(4)	893		1239	30	1378	2	1508	
	Q_Fut_Min	1494	8%	1347	4%	1316	-4%	1349	-2%	1373	-10%	1113	-23%	686	-37%	578	-34%	489	-36%	670	-25%	920	-26%	1308	-5%	1404	-7%
	Q_Fut_Med	1689	22%	1646	27%	1670		1443		1519	-1%	1368	-5%	885	-18%	688	-22%	625	-18%	799	-1196	1251		1547	12%	1591	6%
	Q_Fut_Max	2128	53%	1841	42%	1765	29%	1638	19%	1684	10%	1566	916	1061	-2%	961	10%	827	9%	1031	16%	1543	25%	1869	36%	1837	22%
1 _{10 ans sec}	Q_Obs_Desinf.	1149		1087	0.5	1168		1147	100	1310	100	1273	171	959		804		647		714	-	1007	*/	1163	.00	1390	
	Q_Fut_Min	1211	5%	1126	4%	1117	-4%	1113	-3%	1163	-11%	986	-23%	611	-36%	534	-34%	423	-35%	541	-24%	749	-26%	1098	-6%	1293	-7%
	Q_Fut_Med	1395	21%	1378	27%	1416		1195		1295	-1%	1208	-5%	781	-19%	630	-22%	531	-18%	633	-11%	1008		1294	1196	1462	5%
	Q_Fut_Max	1769	54%	1539	42%	1491	28%	1367	19%	1445	10%	1383	9%	934	-3%	875	9%	699	8%	819	15%	1251	24%	1571	35%	1694	22%
									1		QMN	A	$\overline{}$	V	CN10												
									- 1	m3/	5	Δ(%)	+	m³/s	1 4	(%)											
									-	850		-		526	_	-											
									- 1	591		-30%		378	100	28%											
							Q _{2 a}	ns sec	714		-16%		454		14%												
									ı	944		11%		562		7%											
								_		706				526													
										498		-29%		442	14	16%											
								Q ₅ a	ns sec	595		-16%		524		0%											
										777		10%		702	1 3	14%											
										640				479													
								200	- 1	456		-29%		348	1	27%										R	RI
								Q10 a	ins sec	542		-15%		422	7-4	12%										D	The same
									ı	702		10%		507		6%										100	

A l'horizon 2050

Evolution peu marquée sur les modules A Beaucaire au mois d'aout la médiane inter modèle de projection d'évolution des débits est de -21%,

8 des 10 modèles donnent des perspectives d'évolution entre -16% et -35%

Suite de l'étude

Mission 2 Quels sont les enjeux associés et avec quelle criticité?

Le changement climatique et la baisse des débits vont ils menacer la préservation des enjeux liés au fleuve?

Quels sont les enjeux? À quel bas débit sont ils menacés?

Quelle est la probabilité d'atteindre cette limite? **En cours**

Quels sont les secteurs où des problèmes pourraient Se rencontrer?

En cours

Caractérisation des enjeux (vulnérabilité)

Probabilité de remise en question (fonction de l'hydrologie)

Caractérisation du risque

Expertise + Atelier de réflexion collective en mars 2022

Choix de 6 enjeux par le bureau de CB en juin 2022

Probabilité de remise en question (fonction de l'hydrologie)

 Mission 3 Tester et évaluer une capacité de prélèvements supplémentaires

Octobre à janvier 2023

Atelier du 29 mars 2022

- Quelles sont les problèmes liés au fleuve que pourraient entrainer les changements climatiques ?
- Parmi ces problèmes quels sont ceux qui sont pas / peu /moyennement / très dépendants aux débits du fleuve ?

Les enjeux retenus pour la suite de l'étude

- Production d'énergie décarbonnée à partir du fleuve (nucléaire et hydroélectrique)
- Disponibilité de l'eau pour les prélèvements (→ lien conflit d'usages)
- Connexion des annexes alluviales et des forêt alluviales (secteurs localisés du fleuve)
- Qualité de l'eau pour l'AEP et/ou Bon état écologique
- 5. Coin salé (! multifactoriel : vent...)
- 6. Hydrobiologie (! Risque de limite technique/connaissance)

- Biseau salé
- Turbidité
- · Transport solide
- Navigation

Planning prévisionnel

Merci pour votre attention

